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1  Task Objective 
The objective of this delivery order is to improve the cache performance of 
the computer code AVUS.  

1.1 Background 

AVUS is a three-dimensional (3-D) flow simulator running on unstructured grids. 
Embedded in the simulator is a sparse matrix package for solving coupled partial 
differential equations. Unstructured grid solvers usually do not exhibit optimal computer 
memory access patterns. This project will determine the memory access patterns and 
provide a roadmap for improving it.  
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2 Description of Work 

The following summarizes the activity / work accomplished during the period of January 
1 to August 31, 2005 by the principal investigator Dr. Craig C. Douglas and his graduate 
student Adam Zornes.  
 
A tutorial, Cache-aware Algorithms and PDE Libraries, on using computer cache 
memory subsystems was presented by Craig Douglas on May 18, 2005 at Wright-
Patterson Air Force Base to the Computational Sciences Branch of the Air Vehicles 
Directorate. The presentation covers how the caches are organized and what is 
required to use caches effectively. 

Years ago, knowledge of the number of floating point multiplies used in a given 
algorithm (or code) provided a good measure of the running time of a program. This 
was a good measure for comparing different algorithms to solve the same problem. This 
is no longer true.  Many current computer designs, including the node architecture of 
most parallel supercomputers, employ caches and hierarchical memory architecture.  
Therefore, the speed of a code (e.g., multigrid) depends increasingly on how well the 
cache structure is exploited. The number of cache misses provides a better measure for 
comparing algorithms than the number of multiplies.  Unfortunately, estimating cache 
misses is difficult to model a priori and only somewhat easier to do a posteriori. 

Typical multigrid applications are running on data sets that are much too large to fit into 
the caches.  Thus, copies of the data that are once brought into the cache should be 
reused as often as possible.  For multigrid, the possible number of reuses is always at 
least as great as the number of iterations of the smoother (or rougher), plus the residual 
correction before correction steps. Suitable fixed and adaptive blocking strategies for 
both structured and unstructured grids must be introduced.  Both types of cache-aware 
algorithms use a fixed, given percentage of the cache. 
 
Fixed algorithms use fixed blocks of the unknowns (or subdomains) that are 
determined in a preprocessing step. Adaptive algorithms use a moving active set of 
unknowns that should be in cache and can be reused. Once an unknown has been 
completely updated for k iterations, it leaves the active set.  

The cache-aware algorithms improve the cache usage without changing the underlying 
algorithm. In particular, bitwise compatibility is guaranteed between the standard and 
the high-performance implementations of the algorithms. This is illustrated by 
comparisons for various multigrid algorithms on a selection of different computers for 
problems in two and three dimensions.  

To apply cache-aware principles to the code AVUS, it is first necessary to read the 
actual code, find the relevant parts, and start profiling running examples once the code 
has been built on suitable platforms. The techniques we intend to introduce should be 
fairly portable. One aspect that we had not expected is that AVUS is built using a pair of 
scripts that are tied to certain commercial compilers on specific platforms. We do not 
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have access to these compilers and have had to produce variants of the scripts just to 
get started on compiling and running AVUS.  

We have successfully built and run AVUS on two platforms: a Xeon 64-EMT-based PC 
cluster and an Itanium

2
-based shared-memory HP Integrity Superdome. The code was 

profiled to find the routines that need to be considered for cache-aware algorithms.  

The compilation is driven by the script make_avus. One must configure options for the 
platform on which compilation is to be done. The script then builds and links 
executables for the desired platform and options. The main option is single or double 
precision. Double precision in the default. The make_avus script first checks to see if 
the ParMetis library has been built for the desired platform. If not, it calls another script, 
make_metis, to build the desired library.  After the library has been established, the 
make_avus script checks to see if the .f sources have been built for the desired platform 
and are up to date. If not, they are built and saved in the objects directory en mass. 
When the .f sources have been built, a few other sources are built and then all are 
linked together with the ParMetis library to create the executable, which is saved in the 
bin directory.  

The compilation scripts must be modified to allow for profiling. This involves adding the 
correct options for compilation (specific to each compiler) for producing profiling output. 
This must be done both in the make_avus and make_metis scripts, and sources must 
be rebuilt accordingly.  

Execution is generally done through a .job file. This file sets several environment 
variables (including executable location and calling sequence), creates and input file 
for the program, and calls the program execution script. The execution script is 
AvusRUN. This first moves various files to the correct locations as set by the .job file. 
The script then runs the executable and tidies up by moving output files to a location 
set by the .job file and destroying temporary files.  

To correctly collect profiling data, some aspects of the execution process must be 
modified. This may include altering the AvusRUN script to not remove temporary files 
and may also entail some other changes to the script.  

The first step in profiling was to run AVUS under gprof, a relatively simple profiler. We 
then had statistics on how much time was spent in each of the routines in the overall 
code. This is helpful in determining where the code spends most of its time on a single 
processor. A complete gprof output for one of examples starts at about 70 pages of text, 
which we omit and will provide to the program manager electronically.  
 
The top 15 routines are shown in Table 1. 
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Table 1: Primary Routines Based on gprof Statistics  

% Time Cumsecs  Seconds Calls Msec/Call Name  
14.7 0.25 30.24 6 5040 Ucm6  
12.2 55.28 25.04 5 5008 Karl6sc  
9.7 75.28 20.00 1 20000 Poorgrd  
8.4 92.56 17.28 1 17280 Orderpt  
6.6 106.08 13.52 5 2704 Dfdqi6sc  
6.2 118.72 12.64 5 2528 Lhslusc  
5.9 130.80 12.08 5 2416 Dfdqv6sc  
4.7 140.48 9.68 6 1613 Riemann  
3.2 146.96 6.48 40 162 Hunter  
3.0 153.04 6.08 5 1216 Dfdqt6sc  
2.3 157.76 4.72 6 787 Slip  
2.0 161.92 4.16 6 693 Grad6 
2.0 166.00 4.08 5 816 Vflux6 
1.7 169.52 3.52 5 704 Preset6sc 
1.4 172.32 2.80 5 560 Posi  

 
Ucm6 constructs left and right face values of primitives. Poorgrd compute a mask 
array for the one-sided least-squares gradient construction at each face. the mask 
array is ‘good’ and it is initialized to true in subroutine zero. A neighbor cell not truly 
one-sided will cause a false entry in the appropriate location in the array. Orderpt 
removes redundant points from each face to ensure that each edge is composed of 
two points and is shared by two faces of any given cell in three dimensions. It also 
orders points around the perimeter of each face.  

Karl6sc is the parallel symmetric Gauss-Seidel iterative solver. It communicates 
twice per iteration with neighbors. Riemann solves a Riemann problem at every 
face using the exact Riemann solver of Gottlieb and Groth.  

Most of the rest of the routines are used to construct Jacobians by computing fluxes or 
enforcing boundary conditions or positivity requirements. Anything that passes through 
data once only is not a candidate for improving cache reuse unless the routines can be 
combined so that fewer passes are made through the same data. In particular, 
Poorgrd, Orderpt, and Hunter are not candidates for improvement since on very large 
data sets they use relatively little time.  

A more sophisticated profiler is the HPCToolkit developed at Rice University. It has the 
capability to profile multiple processor codes on platforms that are supported by the 
Performance Application Programming Interface (PAPI), which was developed at the 
University of Tennessee at Knoxville. We are in the process of building scripts that will 
allow us to extract highly detailed runtime statistics on the performance of AVUS. 
Unfortunately, writing the scripts is time consuming, tedious, and not automated. When 
completed, the scripts will be useful after the project as AVUS evolves over time.  
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In the case of multiple processors, the grid is automatically reordered to take 
advantage of locality. This is not done automatically in the single processor case. 
However, a program called Blacksmith may be run to reorder the grid before starting 
AVUS. This causes a significant drop in the time spent per iteration.  
AVUS is spending most of its time generating the problems it has to solve, not on 
solving these problems. One of the principal iterative solvers, a block symmetric Gauss-
Seidel, performs two major communications exchanges every iteration. This algorithm 
needs to be modified in order to be cache efficient. One possibility is to eliminate some 
of the communication by switching the algorithm to a more traditional Schwarz 
alternating method that runs multiple steps of Gauss-Seidel locally.  

Schwarz procedures solve local (domain decomposed) sub-problems to some level 
of accuracy. There are two variants of interest:  

1. Additive: all sub-problems are solved in parallel. Data is exchanged between sub-
problems for overlapping data (if any) in parallel, too.  
2. Multiplicative: each sub-problem is solved sequentially. Data is exchanged only 
between sub-problems that have an update pending.  
 
The additive form is most suitable for parallel processing. There are multilevel variants 
as well, e.g., multigrid within each sub-problem versus domain decomposition within a 
global multigrid procedure. I prefer the latter, but the domain decomposition 
community prefers the former.  

The advantage of an additive Schwarz procedure for AVUS is that the symmetric 
Gauss-Seidel procedure can be modified to be cache-aware. Currently, there are two 
parallel communications of sub-domain boundary data per iteration. Several complete 
iterations can be done instead before communication. Switching to a natural order 
Gauss-Seidel will make it even easier to add cache-aware algorithms devised either by 
my group or the one of Ulrich Ruede in Erlangen (both our groups have cooperated on 
a number of joint papers). Many papers can be found in the MGNet preprint web page.  

Keeping the right-hand sides and the matrix values together in memory in one structure 
seems to make a modest improvement in cache locality. For 3-D problems, this is not 
always the case, however. In a large application, it may be better to have the right-hand 
side in two places depending on what it is needed for. Copying the data makes sense if 
there will be many iterations of the Gauss-Seidel solver.  

Another approach is to do a domain decomposition style Gauss-Seidel solver within 
each Schwarz sub-problem, where the domains now are localized to the size of the 
usable part of cache. Jonathan Hu wrote a Ph.D. dissertation on how to do this for 
multigrid on a single processor for unstructured grids. Danny Thorne wrote a Ph.D. 
dissertation on how to do this for multigrid on a single processor for structured, 
adaptively refined grids. Both dissertations are available in the ML-DDDAS web page, 
http://www.mgnet.org/~douglas/ml-dddas.html. Codes can be provided as examples of 
how to develop such codes. Both students’ codes fall in the category of research codes. 
A newer, production level code that works well in both environments is slowly being 
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written by the researchers in their spare time.  

A significant idea in Hu’s dissertation is to study the adjacency matrix C=(cij) of cache-
bound subdomains. These matrices are square and the size of the number of cache 
blocks used to solve a problem. If cij= cji>0, then cache blocks i and j transfer data 
between each other. Trying to minimize the number of nonzeroes will reduce 
computational time. If the cij represent how many pieces of data have to be transferred 
from block i to j, minimizing the cij as well will have an impact on cache reusability.  

Studying the techniques employed by either Hu or Thorne will take a significant amount 
of time.  
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3 Profiling AVUS with the HPCToolkit  
 
To simplify the process of profiling AVUS with the HPCToolkit, the .job files and the 
AvusRun script have been combined with other HPCToolkit commands and options in a 
single script, hpc_script.  

At the beginning of the script, there are a number of variables that must be defined. 
These are listed and discussed Table 2.  Below this, the input file is created and the 
AvusRun script is concatenated. Alterations have been made, and as of now there is 
support for Linux platforms only. Support for other platforms can be added as needed.  

The process for analyzing AVUS with the HPCToolkit involves five steps. The first step 
is to determine the loop structure of the binary executable file using bloop. Next, the 
executable is run under hpcrun with various optional events defined in the variable 
HPCRUN_EVENTS. After this has been done, the output files produced by hpcrun are 
analyzed by hpcprof. These files are then all combined by hpcquick into a database 
viewable by either hpcviewer or a web browser. Finally, the results may be viewed.  

A number of variables may be defined in the script.  Table 2 lists those variables and a 
short description of each.  For proper execution, all path names should be fully 
qualified, not relative.  

Table 2: HPC_SCRIPT Variable Definitions 

 

Variable name  Description  
AVUSLOC  the directory of the AVUS executable  
SCRATCH  the directory to use for execution of the AVUS  
 script  
MPI_EXEC  the command to invoke a program under MPI,  
 including any options  
JOBLOC  the directory from where the script should be  
 run  
INPUT  the directory and name of the AVUS input file  
OUTPUT  the directory and name of the AVUS output file  
 to be created  
PRECISION  the precision to use for AVUS, single or double  
GRID  the directory and name of the AVUS grid file  
INTERSECTION  the directory and name of the AVUS  
 intersection file  
RESTART  the directory and name of the AVUS restart file  
NEW_RESTART  the directory and name of the AVUS restart file  
 to create  
PIX  the directory and name of the AVUS pix file  
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TAP_LOCATIONS  the directory and name of the AVUS tap  
 locations file  
SHUTDOWN  the directory and name of the AVUS shutdown  
 file to be created  
MOVIE_TAP  the directory and name of the AVUS movie tap  
 file to create  
B1_TRIP  the directory and name of the B1 trip file to 

create 
BOUNDARY_CONDITIONS the directory and name of the boundary 

conditions file 
OVERWRITE the overwrite flag, overwrite or nooverwrite 
OS_TYPE the operating system (OS) used; currently only 

Linux is supported 
 
 
Table 3 contains definitions of the relevant variable used by the HPCToolkit. See the 
web site http://www.hypersoft.rice.edu for further information about the HPCToolkit. 
There are many options which are described in detail in various manual pages for the 
individual components of the HPCToolkit.  The site contains tutorials for an earlier and 
largely incompatible version of the software.  

Table 3: HPCToolkit Variable Definitions 

 

Variable name  Description  
BLOOP_FILE_NAME the name for the bloop output file to be created 
BLOOP_OPTIONS options for running bloop 
EXE the directory and name of the executable to be  

run 
EXE_ARGS arguments used by the executable 
HPCPROF_OPTIONS options for running hpcprof 
HPCRUN_EVENTS events to be taken note of by hpcrun (a  

complete list of events that can be profiled can 
be obtained by executing the command hpcrun –
L) 

HPCRUN_OPTIONS options for running hpcrun 
HPCRUN_OUTPUT_FILE prefix for output from hpcrun 
OUTPUT_DIR the directory to place output 
SRC_DIRS the directories where the source code for the 

executable may be found 

Z_OR_X determines the format of output from hpcquick, 
XML or HTML using -x or -z respectively 
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4 Sources of Future Cooperation  
 
The program manager has computer access to our work through accounts on 
www.mgnet.org (a Mac Mini running Mac OS X 10.4) and hpc1c.csr.uky.edu (a Centos 
4.1 based Itanium

2 
HP workstation). HPCToolkit is installed and functional on hpc1c. 

Should the program manager need to run simple examples in parallel in our 
environment, we will issue logins on hpc1d and hpc1e. I expect that the program 
manager will have questions about how to deal with Schwarz alternating procedures 
and some of the sophisticated cache-aware algorithms that Jonathan Hu and Danny 
Thorne devised as part of their Ph.D. dissertations. I expect to continue cooperating 
with the program manager after the formal end of the project on an informal basis, 
including answering questions related to this final report.  


